Augmenting intracortical brain-machine interface with neurally driven error detectors.
نویسندگان
چکیده
OBJECTIVE Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. APPROACH We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. MAIN RESULTS We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error 'detect-and-act' system that attempts to automatically 'undo' or 'prevent' mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). SIGNIFICANCE Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.
منابع مشابه
Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface.
Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor disabilities by translating decoded neural activity directly into the control of a computer. However, recorded neural signals are not stationary (that is, can change over time), degrading the quality of decoding. Requiring users to pause what they are doing whenever signals change to perform decoder re...
متن کاملInformation Systems Opportunities in Brain – Machine Interface
| Brain–machine interface (BMI) systems convert neural signals from motor regions of the brain into control signals to guide prosthetic devices. The ultimate goal of BMIs is to improve the quality of life for people with paralysis by providing direct neural control of prosthetic arms or computer cursors. While considerable research over the past 15 years has led to compelling BMI demonstrations...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملDesign Principles of a Neuromotor Prosthetic Device
Neuromotor prostheses are a type of brain-machine interface (BMI) that seek to extract signals from the central or peripheral nervous system and deliver them to control devices. A brain-machine interface is necessary to detect activity that can be voluntarily modulated for use as a motor control signal. It is generally accepted that electrical potentials are the most valuable sources of informa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neural engineering
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2017